529 research outputs found

    Biology of bone sarcomas and new therapeutic developments

    Get PDF
    Bone sarcomas are tumours belonging to the family of mesenchymal tumours and constitute a highly heterogeneous tumour group. The three main bone sarcomas are osteosarcoma, Ewing sarcoma and chondrosarcoma each subdivided in diverse histological entities. They are clinically characterised by a relatively high morbidity and mortality, especially in children and adolescents. Although these tumours are histologically, molecularly and genetically heterogeneous, they share a common involvement of the local microenvironment in their pathogenesis. This review gives a brief overview of their specificities and summarises the main therapeutic advances in the field of bone sarcoma

    The Bone Niche of Chondrosarcoma: A Sanctuary for Drug Resistance, Tumour Growth and also a Source of New Therapeutic Targets

    Get PDF
    Chondrosarcomas are malignant cartilage-forming tumours representing around 20% of malignant primary tumours of bone and affect mainly adults in the third to sixth decade of life. Unfortunately, the molecular pathways controlling the genesis and the growth of chondrosarcoma cells are still not fully defined. It is well admitted that the invasion of bone by tumour cells affects the balance between early bone resorption and formation and induces an “inflammatory-like” environment which establishes a dialogue between tumour cells and their environment. The bone tumour microenvironment is then described as a sanctuary that contributes to the drug resistance patterns and may control at least in part the tumour growth. The concept of “niche” defined as a specialized microenvironment that can promote the emergence of tumour stem cells and provide all the required factors for their development recently emerges in the literature. The present paper aims to summarize the main evidence sustaining the existence of a specific bone niche in the pathogenesis of chondrosarcomas

    Interaction of Cutibacterium (formerly Propionibacterium) acnes with bone cells: a step toward understanding bone and joint infection development

    Get PDF
    Cutibacterium acnes (formerly Propionibacterium acnes) is recognized as a pathogen in foreign-body infections (arthroplasty or spinal instrumentation). To date, the direct impact of C. acnes on bone cells has never been explored. The clade of 11 C. acnes clinical isolates was determined by MLST. Human osteoblasts and osteoclasts were infected by live C. acnes. The whole genome sequence of six isolates of this collection was analyzed. CC36 C. acnes strains were significantly less internalized by osteoblasts and osteoclasts than CC18 and CC28 C. acnes strains (p ≤ 0.05). The CC18 C. acnes ATCC6919 isolate could survive intracellularly for at least 96 hours. C. acnes significantly decreased the resorption ability of osteoclasts with a major impact by the CC36 strain (p ≤ 0.05). Genome analysis revealed 27 genes possibly linked to these phenotypic behaviors. We showed a direct impact of C. acnes on bone cells, providing new explanations about the development of C. acnes foreign-body infections

    Tc-99m-NTP 15-5 assessment of the early therapeutic response of chondrosarcoma to zoledronic acid in the Swarm rat orthotopic model

    Get PDF
    Background: Since proteoglycans (PGs) appear as key partners in chondrosarcoma biology, PG-targeted imaging using the radiotracer 99mTc-N-(triethylammonium)-3-propyl-[15]ane-N5 (99mTc-NTP 15-5) developed by our group was previously demonstrated to be a good single-photon emission computed tomography tracer for cartilage neoplasms. We therefore initiated this new preclinical study to evaluate the relevance of 99mTc-NTP 15-5 imaging for the in vivo monitoring and quantitative assessment of chondrosarcoma response to zoledronic acid (ZOL) in the Swarm rat orthotopic model. Findings: Rats bearing chondrosarcoma in the orthotopic paratibial location were treated by ZOL (100 μg/kg, subcutaneously) or phosphate-buffered saline, twice a week, from day 4 to day 48 post-tumor implantation. 99mTc-NTP 15-5 imaging was performed at regular intervals with the target-to-background ratio (TBR) determined. Tumor volume was monitored using a calliper, and histology was performed at the end of the study. From day 11 to day 48, mean TBR values ranged from 1.7 ± 0.6 to 2.3 ± 0.6 in ZOL-treated rats and from 2.1 ± 1.0 to 4.9 ± 0.9 in controls. Tumor growth inhibition was evidenced using a calliper from day 24 and associated to a decrease in PG content in treated tumor tissues (confirmed by histology). Conclusions: This work demonstrated two proofs of concept: (1) biphosphonate therapy could be a promising therapeutic approach for chondrosarcoma; (2) 99mTc-NTP 15-5 is expected to offer a novel imaging modality for the in vivo evaluation of the extracellular matrix features of chondrosarcoma, which could be useful for the follow-up and quantitative assessment of proteoglycan ‘downregulation’ associated to the response to therapeutic attempts

    Structural Analysis of the Western Afar Margin, East Africa: Evidence for Multiphase Rotational Rifting

    Get PDF
    The Afar region in East Africa represents a key location to study continental breakup. We present an integrated structural analysis of the Western Afar Margin (WAM) aiming to better understand rifted margin development and the role of plate rotation during rifting. New structural information from remote sensing, fieldwork, and earthquake data sets reveals that the N-S striking WAM is still actively deforming and is characterized by NNW-SSE normal faulting as well as a series of marginal grabens. Seismicity distribution analysis and the first-ever borehole-calibrated sections of this developing passive margin show recent slip concentrated along antithetic faults. Tectonic stress parameters derived from earthquake focal mechanisms reveal different extension directions along the WAM (82°N), in Afar (66°N) and in the Main Ethiopian Rift (108°N). Fault slip analysis along the WAM yields the same extension direction. Combined with GPS data, this shows that current tectonics in Afar is dominated by the local rotation of the Danakil Block, considered to have occurred since 11 Ma. Earlier stages of Afar development (since 31–25 Ma) were most likely related to the large-scale rotation of the Arabian plate. Various authors have proposed scenarios for the evolution of the WAM. Any complete model should consider, among other factors, the multiphase tectonic history and antithetic fault activity of the margin. The findings of this study are not only relevant for a better understanding of the WAM but also provide insights into the role of multiphase rotational extension during rifting and passive margin formation in general.</p

    Roles of inflammatory cell infiltrate in periprosthetic osteolysis

    Get PDF
    Classically, particle-induced periprosthetic osteolysis at the implant–bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP− multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants

    Open-resorcinarenes, a new family of multivalent scaffolds

    Get PDF
    A new family of multivalent ligand platforms, the open-resorcinarenes, has been prepared in a straightforward two-step reaction. Modification of the core gives a range of topologically diverse scaffolds; functionalisation confirms the versatility of this approach, as shown through the formation of an octacalixarene array

    Evolution of cosmic filaments in the MTNG simulation

    Full text link
    We present a study of the evolution of cosmic filaments across redshift with emphasis on some important properties: filament lengths, growth rates, and radial profiles of galaxy densities. Following an observation-driven approach, we build cosmic filament catalogues at z=0,1,2,3 and 4 from the galaxy distributions of the large hydro-dynamical run of the MilleniumTNG project. We employ the extensively used DisPerSE cosmic web finder code, for which we provide a user-friendly guide, including the details of a physics-driven calibration procedure, with the hope of helping future users. We perform the first statistical measurements of the evolution of connectivity in a large-scale simulation, finding that the connectivity of cosmic nodes (defined as the number of filaments attached) globally decreases from early to late times. The study of cosmic filaments in proper coordinates reveals that filaments grow in length and radial extent, as expected from large-scale structures in an expanding Universe. But the most interesting results arise once the Hubble flow is factored out. We find remarkably stable comoving filament length functions and over-density profiles, showing only little evolution of the total population of filaments in the past ~12.25 Gyrs. However, by tracking the spatial evolution of individual structures, we demonstrate that filaments of different lengths actually follow different evolutionary paths. While short filaments preferentially contract, long filaments expand along their longitudinal direction with growth rates that are the highest in the early, matter dominated Universe. Filament diversity at fixed redshift is also shown by the different (~5σ5 \sigma) density values between the shortest and longest filaments. Our results hint that cosmic filaments can be used as additional probes for dark energy, but further theoretical work is still needed.Comment: 17 pages, submitted to Astronomy & Astrophysics, comments welcome

    Curved Tails in Polymerization-Based Bacterial Motility

    Full text link
    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2
    corecore